Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L213-L225, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113296

RESUMO

Neonates with congenital diaphragmatic hernia (CDH) frequently require cardiopulmonary bypass and systemic anticoagulation. We previously demonstrated that even subtherapeutic heparin impairs lung growth and function in a murine model of compensatory lung growth (CLG). The direct thrombin inhibitors (DTIs) bivalirudin and argatroban preserved growth in this model. Although DTIs are increasingly used for systemic anticoagulation clinically, patients with CDH may still receive heparin. In this experiment, lung endothelial cell proliferation was assessed following treatment with heparin-alone or mixed with increasing concentrations of bivalirudin or argatroban. The effects of subtherapeutic heparin with or without DTIs in the CLG model were also investigated. C57BL/6J mice underwent left pneumonectomy and subcutaneous implantation of osmotic pumps. Pumps were preloaded with normal saline, bivalirudin, or argatroban; treated animals received daily intraperitoneal low-dose heparin. In vitro, heparin-alone decreased endothelial cell proliferation and increased apoptosis. The effect of heparin on proliferation, but not apoptosis, was reversed by the addition of bivalirudin and argatroban. In vivo, low-dose heparin decreased lung volume compared with saline-treated controls. All three groups that received heparin demonstrated decreased lung function on pulmonary function testing and impaired exercise performance on treadmill tolerance testing. These findings correlated with decreases in alveolarization, vascularization, angiogenic signaling, and gene expression in the heparin-exposed groups. Together, these data suggest that bivalirudin and argatroban fail to reverse the inhibitory effects of subtherapeutic heparin on lung growth and function. Clinical studies on the impact of low-dose heparin with DTIs on CDH outcomes are warranted.NEW & NOTEWORTHY Infants with pulmonary hypoplasia frequently require cardiopulmonary bypass and systemic anticoagulation. We investigate the effects of simultaneous exposure to heparin and direct thrombin inhibitors (DTIs) on lung growth and pulmonary function in a murine model of compensatory lung growth (CGL). Our data suggest that DTIs fail to reverse the inhibitory effects of subtherapeutic heparin on lung growth and function. Clinical studies on the impact of heparin with DTIs on clinical outcomes are thus warranted.


Assuntos
Antitrombinas , Arginina/análogos & derivados , Heparina , Ácidos Pipecólicos , Sulfonamidas , Humanos , Animais , Camundongos , Heparina/farmacologia , Heparina/uso terapêutico , Antitrombinas/farmacologia , Antitrombinas/uso terapêutico , Anticoagulantes/uso terapêutico , Pneumonectomia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Hirudinas/farmacologia , Fibrinolíticos , Pulmão/metabolismo , Fragmentos de Peptídeos/farmacologia , Proteínas Recombinantes/farmacologia , Trombina/farmacologia , Trombina/metabolismo
2.
Pediatr Res ; 93(7): 1846-1855, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36195630

RESUMO

BACKGROUND: Neonates with congenital diaphragmatic hernia (CDH) suffer from pulmonary hypoplasia (PH) and may require extracorporeal membrane oxygenation (ECMO) and anticoagulation, often with unfractionated heparin (UFH). UFH interacts with vascular endothelial growth factor (VEGF), a factor important in lung development. We investigated the effects of UFH, low molecular weight heparin (LMWH), and bivalirudin (BV) on a murine model of compensatory lung growth (CLG). METHODS: Proliferation and apoptosis were assessed in microvascular lung endothelial cells (HMVEC-L) treated with anticoagulants. Eight-week-old C57Bl/6J mice underwent left pneumonectomy and anticoagulation with low- or high-dose UFH, LMWH, BV, or saline control. Lung volume, pulmonary function tests, morphometrics, treadmill exercise tolerance, and pulmonary protein expression were examined. RESULTS: UFH and LMWH inhibited HMVEC-L proliferation. BV promoted proliferation and decreased apoptosis. UFH and LMWH-treated mice had reduced lung volume, total lung capacity, alveolar volume, and septal surface area compared to controls, while BV did not affect these measures. UFH and LMWH-treated mice had lower exercise tolerance compared to controls. CONCLUSIONS: UFH and LMWH impair pulmonary growth, alveolarization, and exercise tolerance, while BV does not. Alternative anticoagulants to heparin may be considered to improve functional outcomes for neonates with CDH and pulmonary hypoplasia. IMPACT: Unfractionated heparin and low molecular weight heparin may modify compensatory lung growth by reducing microvascular lung endothelial cell proliferation and affecting pulmonary angiogenic signaling. Functional effects of unfractionated heparin and low molecular weight heparin on murine compensatory lung growth include reduction in exercise tolerance. Bivalirudin, a direct thrombin inhibitor, may increase microvascular lung endothelial cell proliferation and preserves lung volume, alveolarization, and exercise tolerance in a murine compensatory lung growth model. Anticoagulants alternative to heparin should be further investigated for use in neonates with pulmonary hypoplastic diseases to optimize lung growth and development and improve outcomes.


Assuntos
Heparina , Hérnias Diafragmáticas Congênitas , Animais , Camundongos , Heparina/farmacologia , Heparina de Baixo Peso Molecular/farmacologia , Fator A de Crescimento do Endotélio Vascular , Células Endoteliais , Modelos Animais de Doenças , Anticoagulantes/farmacologia , Pulmão
3.
Sci Rep ; 12(1): 21117, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477689

RESUMO

Infants with congenital diaphragmatic hernia (CDH) may require cardiopulmonary bypass and systemic anticoagulation. Expeditious lung growth while on bypass is essential for survival. Previously, we demonstrated that heparin impairs lung growth and function in a murine model of compensatory lung growth (CLG). We investigated the effects of the direct thrombin inhibitors (DTIs) bivalirudin and argatroban. In vitro assays of lung endothelial cell proliferation and apoptosis were performed. C57BL/6 J mice underwent left pneumonectomy and subcutaneous implantation of osmotic pumps. Pumps were pre-loaded with normal saline (control), bivalirudin, argatroban, or heparin and outcomes were assessed on postoperative day 8. Heparin administration inhibited endothelial cell proliferation in vitro and significantly decreased lung volume in vivo, while bivalirudin and argatroban preserved lung growth. These findings correlated with changes in alveolarization on morphometric analysis. Treadmill exercise tolerance testing demonstrated impaired exercise performance in heparinized mice; bivalirudin/argatroban did not affect exercise tolerance. On lung protein analysis, heparin decreased angiogenic signaling which was not impacted by bivalirudin or argatroban. Together, this data supports the use of DTIs as alternatives to heparin for systemic anticoagulation in CDH patients on bypass. Based on this work, clinical studies on the impact of heparin and DTIs on CDH outcomes are warranted.


Assuntos
Antitrombinas , Heparina , Camundongos , Animais , Antitrombinas/farmacologia , Antitrombinas/uso terapêutico , Heparina/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Pulmão
4.
Br J Cancer ; 127(3): 422-435, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35418212

RESUMO

BACKGROUND: Angiogenin is a multifunctional secreted ribonuclease that is upregulated in human cancers and downregulated or mutationally inactivated in neurodegenerative diseases. A role for angiogenin in glioblastoma was inferred from the inverse correlation of angiogenin expression with patient survival but had not been experimentally investigated. METHODS: Angiogenin knockout mice were generated and the effect of angiogenin deficiency on glioblastoma progression was examined. Angiogenin and plexin-B2 genes were knocked down in glioblastoma cells and the changes in cell proliferation, invasion and vascular association were examined. Monoclonal antibodies of angiogenin and small molecules were used to assess the therapeutic activity of the angiogenin-plexin-B2 pathway in both genetic and xenograft animal models. RESULTS: Deletion of Ang1 gene prolonged survival of PDGF-induced glioblastoma in mice in the Ink4a/Arf-/-:Pten-/- background, accompanied by decreased invasion, vascular association and proliferation. Angiogenin upregulated MMP9 and CD24 leading to enhanced invasion and vascular association. Inhibition of angiogenin or plexin-B2, either by shRNA, monoclonal antibody or small molecule inhibitor, decreases sphere formation of patient-derived glioma stem cells, reduces glioblastoma proliferation and invasion and inhibits glioblastoma growth in both genetic and xenograft animal models. CONCLUSIONS: Angiogenin and its receptor, plexin-B2, are a pair of novel regulators that mediate invasion, vascular association and proliferation of glioblastoma cells. Inhibitors of the angiogenin-plexin-B2 axis have therapeutic potential against glioblastoma.


Assuntos
Glioblastoma , Proteínas do Tecido Nervoso , Ribonuclease Pancreático , Animais , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
5.
FASEB J ; 35(10): e21850, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569654

RESUMO

Children with hypoplastic lung disease associated with congenital diaphragmatic hernia (CDH) continue to suffer significant morbidity and mortality secondary to progressive pulmonary disease. Recently published work from our lab demonstrated the potential of Roxadustat (FG-4592), a prolyl hydroxylase inhibitor, as a treatment for CDH-associated pulmonary hypoplasia. Treatment with Roxadustat led to significantly accelerated compensatory lung growth (CLG) through downregulation of pigment epithelium-derived factor (PEDF), an anti-angiogenic factor, rather than upregulation of vascular endothelial growth factor (VEGF). PEDF and its role in pulmonary development is a largely unexplored field. In this study, we sought to further evaluate the role of PEDF in accelerating CLG. PEDF-deficient mice demonstrated significantly increased lung volume, total lung capacity, and alveolarization compared to wild type controls following left pneumonectomy without increased VEGF expression. Furthermore, Roxadustat administration in PEDF-deficient mice did not further accelerate CLG. Human microvascular endothelial lung cells (HMVEC-L) and human pulmonary alveolar epithelial cells (HPAEC) similarly demonstrated decreased PEDF expression with Roxadustat administration. Additionally, downregulation of PEDF in Roxadustat-treated HMVEC-L and HPAEC, a previously unreported finding, speaks to the potential translatability of Roxadustat from small animal studies. Taken together, these findings further suggest that PEDF downregulation is the primary mechanism by which Roxadustat accelerates CLG. More importantly, these data highlight the critical role PEDF may have in pulmonary growth and development, a previously unexplored field.


Assuntos
Células Endoteliais/citologia , Células Epiteliais/citologia , Proteínas do Olho/fisiologia , Glicina/análogos & derivados , Isoquinolinas/farmacologia , Pulmão/crescimento & desenvolvimento , Fatores de Crescimento Neural/fisiologia , Serpinas/fisiologia , Animais , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glicina/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Sci Rep ; 11(1): 11827, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088930

RESUMO

Morbidity and mortality for neonates with congenital diaphragmatic hernia-associated pulmonary hypoplasia remains high. These patients may be deficient in vascular endothelial growth factor (VEGF). Our lab previously established that exogenous VEGF164 accelerates compensatory lung growth (CLG) after left pneumonectomy in a murine model. We aimed to further investigate VEGF-mediated CLG by examining the role of the heparin-binding domain (HBD). Eight-week-old, male, C57BL/6J mice underwent left pneumonectomy, followed by post-operative and daily intraperitoneal injections of equimolar VEGF164 or VEGF120, which lacks the HBD. Isovolumetric saline was used as a control. VEGF164 significantly increased lung volume, total lung capacity, and alveolarization, while VEGF120 did not. Treadmill exercise tolerance testing (TETT) demonstrated improved functional outcomes post-pneumonectomy with VEGF164 treatment. In lung protein analysis, VEGF treatment modulated downstream angiogenic signaling. Activation of epithelial growth factor receptor and pulmonary cell proliferation was also upregulated. Human microvascular lung endothelial cells (HMVEC-L) treated with VEGF demonstrated decreased potency of VEGFR2 activation with VEGF121 treatment compared to VEGF165 treatment. Taken together, these data indicate that the VEGF HBD contributes to angiogenic and proliferative signaling, is required for accelerated compensatory lung growth, and improves functional outcomes in a murine CLG model.


Assuntos
Heparina/química , Pulmão/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Desenho de Fármacos , Células Endoteliais/metabolismo , Teste de Esforço , Hematócrito , Humanos , Pulmão/metabolismo , Pulmão/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Pneumonectomia , Domínios Proteicos , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/química
7.
Angiogenesis ; 23(4): 637-649, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32666268

RESUMO

Children with hypoplastic lung disease associated with congenital diaphragmatic hernia (CDH) continue to suffer significant morbidity and mortality secondary to progressive pulmonary disease. Current management of CDH is primarily supportive and mortality rates of the most severely affected children have remained unchanged in the last few decades. Previous work in our lab has demonstrated the importance of vascular endothelial growth factor (VEGF)-mediated angiogenesis in accelerating compensatory lung growth. In this study, we evaluated the potential for Roxadustat (FG-4592), a prolyl hydroxylase inhibitor known to increase endogenous VEGF, in accelerating compensatory lung growth. Treatment with Roxadustat increased lung volume, total lung capacity, alveolarization, and exercise tolerance compared to controls following left pneumonectomy. However, this effect was likely modulated not only by increased VEGF, but rather also by decreased pigment epithelium-derived factor (PEDF), an anti-angiogenic factor. Furthermore, this mechanism of action may be specific to Roxadustat. Vadadustat (AKB-6548), a structurally similar prolyl hydroxylase inhibitor, did not demonstrate accelerated compensatory lung growth or decreased PEDF expression following left pneumonectomy. Given that Roxadustat is already in Phase III clinical studies for the treatment of chronic kidney disease-associated anemia with minimal side effects, its use for the treatment of pulmonary hypoplasia could potentially proceed expeditiously.


Assuntos
Glicina/análogos & derivados , Isoquinolinas/farmacologia , Pulmão/crescimento & desenvolvimento , Pulmão/fisiologia , Modelos Biológicos , Animais , Complacência (Medida de Distensibilidade) , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proteínas do Olho , Glicina/administração & dosagem , Glicina/farmacologia , Isoquinolinas/administração & dosagem , Pulmão/efeitos dos fármacos , Pulmão/cirurgia , Masculino , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural , Tamanho do Órgão/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Condicionamento Físico Animal , Ácidos Picolínicos , Pneumonectomia , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/crescimento & desenvolvimento , Testes de Função Respiratória , Serpinas , Capacidade Pulmonar Total , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
PLoS One ; 13(12): e0208579, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30566445

RESUMO

Exogenous vascular endothelial growth factor (VEGF) accelerates compensatory lung growth (CLG) in mice after unilateral pneumonectomy. In this study, we unexpectedly discovered a method to enhance CLG with a VEGF inhibitor, soluble VEGFR1. Eight-week-old C57BL/6 male mice underwent left pneumonectomy, followed by daily intraperitoneal (ip) injection of either saline (control) or 20 µg/kg of VEGFR1-Fc. On post-operative day (POD) 4, mice underwent pulmonary function tests (PFT) and lungs were harvested for volume measurement and analyses of the VEGF signaling pathway. To investigate the role of hypoxia in mediating the effects of VEGFR1, experiments were repeated with concurrent administration of PT-2385, an inhibitor of hypoxia-induced factor (HIF)2α, via orogastric gavage at 10 mg/kg every 12 hours for 4 days. We found that VEGFR1-treated mice had increased total lung capacity (P = 0.006), pulmonary compliance (P = 0.03), and post-euthanasia lung volume (P = 0.049) compared to control mice. VEGFR1 treatment increased pulmonary levels of VEGF (P = 0.008) and VEGFR2 (P = 0.01). It also stimulated endothelial proliferation (P < 0.0001) and enhanced pulmonary surfactant production (P = 0.03). The addition of PT-2385 abolished the increase in lung volume and endothelial proliferation in response to VEGFR1. By paradoxically stimulating angiogenesis and enhancing lung growth, VEGFR1 could represent a new treatment strategy for neonatal lung diseases characterized by dysfunction of the HIF-VEGF pathway.


Assuntos
Pulmão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Relação Dose-Resposta a Droga , Meia-Vida , Pulmão/crescimento & desenvolvimento , Pulmão/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Pneumonectomia , Proteínas Recombinantes de Fusão/biossíntese , Testes de Função Respiratória , Transdução de Sinais/efeitos dos fármacos , Tensoativos/metabolismo , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Angiogenesis ; 21(4): 837-848, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29956017

RESUMO

Children with hypoplastic lung diseases, such as congenital diaphragmatic hernia, can require life support via extracorporeal membrane oxygenation and systemic anticoagulation, usually in the form of heparin. The role of heparin in angiogenesis and organ growth is inconclusive, with conflicting data reported in the literature. This study aimed to investigate the effects of heparin on lung growth in a model of compensatory lung growth (CLG). Compared to the absence of heparin, treatment with heparin decreased the vascular endothelial growth factor (VEGF)-mediated activation of VEGFR2 and mitogenic effect on human lung microvascular endothelial cells in vitro. Compared to non-heparinized controls, heparinized mice demonstrated impaired pulmonary mechanics, decreased respiratory volumes and flows, and reduced activity levels after left pneumonectomy. They also had lower lung volume, pulmonary septal surface area and alveolar density on morphometric analyses. Lungs of heparinized mice displayed decreased phosphorylation of VEGFR2 compared to the control group, with consequential downstream reduction in markers of cellular proliferation and survival. The use of bivalirudin, an alternative anticoagulant that does not interact with VEGF, preserved lung growth and pulmonary mechanics. These results demonstrated that heparin impairs CLG by reducing VEGFR2 activation. These findings raise concern for the clinical use of heparin in the setting of organ growth or regeneration.


Assuntos
Heparina/farmacologia , Pulmão/crescimento & desenvolvimento , Pneumonectomia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hirudinas/farmacologia , Humanos , Pulmão/patologia , Masculino , Camundongos , Fragmentos de Peptídeos/farmacologia , Proteínas Recombinantes/farmacologia
10.
Pediatr Res ; 83(6): 1182-1189, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29638228

RESUMO

BackgroundDeficiency of vascular endothelial growth factor (VEGF) is associated with hypoplastic lung diseases, such as congenital diaphragmatic hernia. Provision of VEGF has been demonstrated to be beneficial in hyperoxia-induced bronchopulmonary dysplasia, and hence could induce lung growth and improve the outcome in hypoplastic lung diseases. We aimed to determine the effects of exogenous VEGF in a rodent model of compensatory lung growth after left pneumonectomy.MethodsEight-to-ten-week-old C57Bl6 male mice underwent left pneumonectomy, followed by daily intra-peritoneal injections of saline or VEGF (0.5 mg/kg). Lung volume measurement, pulmonary function tests, and morphometric analyses were performed on post-operative day (POD) 4 and 10. The pulmonary expression of angiogenic factors was analyzed by quantitative polymerase chain reaction and western blot.ResultsLung volume on POD 4 was higher in the VEGF-treated mice (P=0.03). On morphometric analyses, VEGF increased the parenchymal volume (P=0.001), alveolar volume (P=0.0003), and alveolar number (P<0.0001) on POD 4. The VEGF group displayed higher levels of phosphorylated-VEGFR2/VEGFR2 (P=0.03) and epidermal growth factor (EGF) messenger RNA (P=0.01).ConclusionVEGF accelerated the compensatory lung growth in mice, by increasing the alveolar units. These changes may be mediated by VEGFR2 and EGF-dependent mechanisms.


Assuntos
Pulmão/crescimento & desenvolvimento , Alvéolos Pulmonares/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Displasia Broncopulmonar/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Hiperóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Tamanho do Órgão , Organogênese , Pneumonectomia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Cell ; 171(4): 849-864.e25, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100074

RESUMO

Angiogenin (ANG) is a secreted ribonuclease (RNase) with cell-type- and context-specific roles in growth, survival, and regeneration. Although these functions require receptor-mediated endocytosis and appropriate subcellular localization, the identity of the cell surface receptor remains undefined. Here, we show that plexin-B2 (PLXNB2) is the functional receptor for ANG in endothelial, cancer, neuronal, and normal hematopoietic and leukemic stem and progenitor cells. Mechanistically, PLXNB2 mediates intracellular RNA processing that contribute to cell growth, survival, and regenerative capabilities of ANG. Antibodies generated against the ANG-binding site on PLXNB2 restricts ANG activity in vitro and in vivo, resulting in inhibition of established xenograft tumors, ANG-induced neurogenesis and neuroprotection, levels of pro-self-renewal transcripts in hematopoietic and patient-derived leukemic stem and progenitor cells, and reduced progression of leukemia in vivo. PLXNB2 is therefore required for the physiological and pathological functions of ANG and has significant therapeutic potential in solid and hematopoietic cancers and neurodegenerative diseases.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Ribonuclease Pancreático/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Células-Tronco Hematopoéticas/metabolismo , Xenoenxertos , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Proteínas do Tecido Nervoso/antagonistas & inibidores , Neurogênese , Ribonuclease Pancreático/química
12.
Angiogenesis ; 16(2): 387-404, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23143660

RESUMO

Altered RNA processing is an underlying mechanism of amyotrophic lateral sclerosis (ALS). Missense mutations in a number of genes involved in RNA function and metabolisms are associated with ALS. Among these genes is angiogenin (ANG), the fifth member of the vertebrate-specific, secreted ribonuclease superfamily. ANG is an angiogenic ribonuclease, and both its angiogenic and ribonucleolytic activities are important for motor neuron health. Ribonuclease 4 (RNASE4), the fourth member of this superfamily, shares the same promoters with ANG and is co-expressed with ANG. However, the biological role of RNASE4 is unknown. To determine whether RNASE4 is involved in ALS pathogenesis, we sequenced the coding region of RNASE4 in ALS and control subjects and characterized the angiogenic, neurogenic, and neuroprotective activities of RNASE4 protein. We identified an allelic association of SNP rs3748338 with ALS and demonstrated that RNASE4 protein is able to induce angiogenesis in in vitro, ex vivo, and in vivo assays. RNASE4 also induces neural differentiation of P19 mouse embryonal carcinoma cells and mouse embryonic stem cells. Moreover, RNASE4 not only stimulates the formation of neurofilaments from mouse embryonic cortical neurons, but also protects hypothermia-induced degeneration. Importantly, systemic treatment with RNASE4 protein slowed weight loss and enhanced neuromuscular function of SOD1 (G93A) mice.


Assuntos
Neovascularização Fisiológica , Neurogênese , Ribonucleases/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Humanos , Hibridização In Situ , Camundongos , Reação em Cadeia da Polimerase , Polimorfismo Genético , Ribonucleases/genética
13.
Ann Neurol ; 70(6): 964-73, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22190368

RESUMO

OBJECTIVE: Several studies have suggested an increased frequency of variants in the gene encoding angiogenin (ANG) in patients with amyotrophic lateral sclerosis (ALS). Interestingly, a few ALS patients carrying ANG variants also showed signs of Parkinson disease (PD). Furthermore, relatives of ALS patients have an increased risk to develop PD, and the prevalence of concomitant motor neuron disease in PD is higher than expected based on chance occurrence. We therefore investigated whether ANG variants could predispose to both ALS and PD. METHODS: We reviewed all previous studies on ANG in ALS and performed sequence experiments on additional samples, which allowed us to analyze data from 6,471 ALS patients and 7,668 controls from 15 centers (13 from Europe and 2 from the USA). We sequenced DNA samples from 3,146 PD patients from 6 centers (5 from Europe and 1 from the USA). Statistical analysis was performed using the variable threshold test, and the Mantel-Haenszel procedure was used to estimate odds ratios. RESULTS: Analysis of sequence data from 17,258 individuals demonstrated a significantly higher frequency of ANG variants in both ALS and PD patients compared to control subjects (p = 9.3 × 10(-6) for ALS and p = 4.3 × 10(-5) for PD). The odds ratio for any ANG variant in patients versus controls was 9.2 for ALS and 6.7 for PD. INTERPRETATION: The data from this multicenter study demonstrate that there is a strong association between PD, ALS, and ANG variants. ANG is a genetic link between ALS and PD.


Assuntos
Esclerose Amiotrófica Lateral/genética , Predisposição Genética para Doença , Variação Genética/genética , Doença de Parkinson/genética , Ribonuclease Pancreático/genética , Bases de Dados Factuais/estatística & dados numéricos , Europa (Continente) , Feminino , Humanos , Masculino , Estudos Multicêntricos como Assunto , Estados Unidos
14.
FEBS J ; 277(17): 3575-87, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20695888

RESUMO

Angiogenin is a 14 kDa protein originally identified as an angiogenic protein. Recent development has shown that angiogenin acts on both endothelial cells and neuronal cells. Loss-of-function mutations in the coding region of the ANG gene have recently been identified in patients with amyotrophic lateral sclerosis. Angiogenin has been shown to control motor neuron survival and protect neurons from apoptosis under various stress conditions. In this article, we characterize the anti-apoptotic activity of angiogenin in pluripotent P19 mouse embryonal carcinoma cells. Angiogenin prevents serum withdrawal-induced apoptosis. Angiogenin upregulates anti-apoptotic genes, including Bag1, Bcl-2, Hells, Nf-kappab and Ripk1, and downregulates pro-apoptotic genes, such as Bak1, Tnf, Tnfr, Traf1 and Trp63. Knockdown of Bcl-2 largely abolishes the anti-apoptotic activity of angiogenin, whereas the inhibition of Nf-kappab activity results in a partial, but significant, inhibition of the protective activity of angiogenin. Thus, angiogenin prevents stress-induced cell death through both the Bcl-2 and Nf-kappab pathways.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Embrionário/patologia , Meios de Cultura Livres de Soro/farmacologia , Ribonuclease Pancreático/farmacologia , Animais , Apoptose/genética , Carcinoma Embrionário/genética , Caspases/metabolismo , Citocromos c/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
15.
Mol Cancer Res ; 7(3): 415-24, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19258415

RESUMO

Angiogenin (ANG), originally identified as an angiogenic ribonuclease, has recently been shown to play a direct role in prostate cancer cell proliferation by mediating rRNA transcription. ANG is up-regulated in human prostate cancer and is the most significantly up-regulated gene in AKT-driven prostate intraepithelial neoplasia (PIN) in mice. Enhanced cell proliferation in the PIN lesions requires increased ribosome biogenesis, a multistep process involving an orchestrated production of ribosomal proteins and rRNA. AKT is known to enhance ribosomal protein production through the mammalian target of rapamycin pathway. However, it was unknown how rRNA is proportionally increased. Here, we report that ANG is essential for AKT-driven PIN formation and survival. We showed that up-regulation of ANG in the AKT-overexpressing mouse prostates is an early and lasting event. It occurs before PIN initiation and lasts beyond PIN is fully developed. Knocking down ANG expression by intraprostate injection of lentivirus-mediated ANG-specific small interfering RNA prevents AKT-induced PIN formation without affecting AKT expression and its signaling through the mammalian target of rapamycin pathway. Neomycin, an aminoglycoside that blocks nuclear translocation of ANG, and N65828, a small-molecule enzymatic inhibitor of the ribonucleolytic activity of ANG, both prevent AKT-induced PIN formation and reverse established PIN. They also decrease nucleolar organizer region, restore cell size, and normalize luminal architectures of the prostate despite continuous activation of AKT. All three types of the ANG inhibitor suppress rRNA transcription of the prostate luminal epithelial cells and inhibit AKT-induced PIN, indicating an essential role of ANG in AKT-mediated cell proliferation and survival.


Assuntos
Proteína Oncogênica v-akt/metabolismo , Neoplasia Prostática Intraepitelial/genética , Neoplasias da Próstata/genética , RNA Ribossômico/genética , Ribonuclease Pancreático/biossíntese , Animais , Antibióticos Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Dactinomicina/farmacologia , Masculino , Camundongos , Neomicina/farmacologia , Neoplasia Prostática Intraepitelial/tratamento farmacológico , Neoplasia Prostática Intraepitelial/metabolismo , Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Inibidores da Síntese de Proteínas/farmacologia , RNA Interferente Pequeno/genética , Ribonuclease Pancreático/antagonistas & inibidores , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional , Regulação para Cima/efeitos dos fármacos
16.
Expert Opin Ther Targets ; 12(10): 1229-42, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18781822

RESUMO

BACKGROUND: Missense heterozygous mutations in the coding region of angiogenin (ANG) gene, encoding a 14 kDa angiogenic RNase, were recently found in patients of amyotropic lateral sclerosis (ALS). Functional analyses have shown that these are loss-of-function mutations, implying that angiogenin deficiency is associated with ALS pathogenesis and that increasing ANG expression or angiogenin activity could be a novel approach for ALS therapy. OBJECTIVE: Review the evidence showing the involvement of angiogenin in motor neuron physiology and function, and provide a rationale for targeting angiogenin in ALS therapy. METHODS: Review the current understanding of the mechanism of angiogenin action in connection with ALS genetics, pathogenesis and therapy. CONCLUSION: ANG is the first gene whose loss-of-function mutations are associated with ALS pathogenesis. Therapeutic modulation of angiogenin level and activity in the spinal cord, either by systemic delivery of angiogenin protein or through retrograde transport of ANG-encoding viral particles, may be beneficial for ALS patients.


Assuntos
Esclerose Amiotrófica Lateral/tratamento farmacológico , Ribonuclease Pancreático/genética , Esclerose Amiotrófica Lateral/genética , Ensaios Clínicos como Assunto , Humanos , RNA Ribossômico/genética , Ribonuclease Pancreático/fisiologia , Transcrição Gênica/fisiologia
17.
Ann Neurol ; 62(6): 609-17, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17886298

RESUMO

OBJECTIVE: Heterozygous missense mutations in the coding region of angiogenin (ANG), an angiogenic ribonuclease, have been reported in amyotrophic lateral sclerosis (ALS) patients. However, the role of ANG in motor neuron physiology and the functional consequences of these mutations are unknown. We searched for new mutations and sought to define the functional consequences of these mutations. METHODS: We sequenced the coding region of ANG in an independent cohort of North American ALS patients. Identified ANG mutations were then characterized using functional assays of angiogenesis, ribonucleolysis, and nuclear translocation. We also examined expression of ANG in normal human fetal and adult spinal cords. RESULTS: We identified four mutations in the coding region of ANG from 298 ALS patients. Three of these mutations are present in the mature protein. Among the four mutations, P(-4)S, S28N, and P112L are novel, and K17I has been reported previously. Functional assays show that these ANG mutations result in complete loss of function. The mutant ANG proteins are unable to induce angiogenesis because of a deficiency in ribonuclease activity, nuclear translocation, or both. As a correlate, we demonstrate strong ANG expression in both endothelial cells and motor neurons of normal human spinal cords from the developing fetus and adult. INTERPRETATION: We provide the first evidence that ANG mutations, identified in ALS patients, are associated with functional loss of ANG activity. Moreover, strong ANG expression, in normal human fetal and adult spinal cord neurons and endothelial cells, confirms the plausibility of ANG dysfunction being relevant to the pathogenesis of ALS.


Assuntos
Esclerose Amiotrófica Lateral/fisiopatologia , Mutação , Ribonuclease Pancreático/genética , Transporte Ativo do Núcleo Celular , Adulto , Idoso de 80 Anos ou mais , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Núcleo Celular/metabolismo , Estudos de Coortes , Células Endoteliais/metabolismo , Feminino , Feto/metabolismo , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Mutação de Sentido Incorreto , Neovascularização Fisiológica , Ribonuclease Pancreático/deficiência , Ribonuclease Pancreático/metabolismo , Ribonucleases/deficiência , Medula Espinal/embriologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo
18.
Toxicol Sci ; 96(1): 92-100, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17164472

RESUMO

Lead (Pb) is known to preferentially suppress the activation and development of type-1 CD4+ helper T cell (Th1) responses, whereas it enhances the development of type-2 CD4+ helper T cell (Th2) responses. The inhibition of interferon-gamma (IFNgamma) production has been demonstrated in vitro with a Th1 clone and DO11.10 ovalbumin-transgenic (OVA-tg) CD4+ T cells, and in vivo with wild-type and OVA-tg BALB/c mice; however, the mechanisms responsible for the Pb-induced downregulation of IFNgamma have not been reported. Here, we assessed the modulation of IFNgamma production at the mRNA and protein levels. Pb did not significantly affect IFNgamma mRNA expression by a Th1 clone or activated splenocytes, as measured by reverse transcriptase-polymerase chain reaction (RT-PCR), ribonuclease protection, and real-time RT-PCR. However, Pb did significantly lower the amount of IFNgamma protein in supernatants and cell lysates of antigen-activated T cells in comparison to stimulated controls, suggesting that the lower amounts of IFNgamma released into culture supernatants were not due to a blockage of secretion that gave rise to a cytoplasmic accumulation of IFNgamma. Pb inhibition also was not prevented by addition of zinc or iron. Pb did not enhance protein degradation of IFNgamma, in that lactacystin, an effective blocker of proteosomal proteolysis, did not prevent loss of IFNgamma; additionally, Pb did not accelerate loss of IFNgamma after cycloheximide treatment. Pb did, however, significantly suppress IFNgamma biosynthesis, as investigated using 35S-incorporation in pulse/chase experiments, although it did not suppress total protein synthesis, indicating that Pb selectively inhibits IFNgamma biosynthesis. Thus, Pb appears to selectively interfere with the translation of certain proteins, such as IFNgamma. IL-12 blocked Pb's preferential promotion of Th2 cells, but absence of STAT6 did not prevent the Pb skewing. Thus, Pb may modulate unique regulatory pathways.


Assuntos
Interferon gama/biossíntese , Chumbo/toxicidade , Biossíntese de Proteínas/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Animais , Linhagem Celular , Cloretos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Compostos Ferrosos/farmacologia , Imunidade Celular/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Interleucina-12/farmacologia , Interleucina-4/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Ovalbumina/genética , Ovalbumina/metabolismo , Complexo de Endopeptidases do Proteassoma , RNA Mensageiro/biossíntese , Fator de Transcrição STAT4/deficiência , Fator de Transcrição STAT6/deficiência , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/metabolismo , Células Th2/efeitos dos fármacos , Células Th2/metabolismo , Fatores de Tempo , Compostos de Zinco/farmacologia
19.
Radiat Res ; 165(6): 688-94, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16802869

RESUMO

The bystander effect, originating from cells irradiated in vitro, describes responses of surrounding cells not targeted by the radiation. Previously we demonstrated that the subcutaneous injection into nude mice of human adenocarcinoma LS174T cells lethally irradiated by Auger electrons from the decay of DNA-incorporated (125)I inhibits growth of co-injected LS174T cells (inhibitory bystander effect; Proc. Natl. Acad. Sci. USA 99, 13765-13770, 2002). We have repeated these studies using cells exposed to lethal doses of (123)I, an Auger electron emitter whose emission spectrum is identical to that of (125)I, and report herein that the decay of (123)I within tumor cell DNA stimulates the proliferation of neighboring unlabeled tumor cells growing subcutaneously in nude mice (stimulatory bystander effect). Similar inhibitory bystander effects ((125)I) and stimulatory bystander effects ((123)I) are obtained in vitro. Moreover, supernatants from cultures with (125)I-labeled cells are positive for tissue inhibitors of metalloproteinases (TIMP1 and TIMP2), and those from cultures with (123)I-labeled cells are positive for angiogenin. These findings call for the re-evaluation of current dosimetric approaches for the estimation of dose-response relationships in individuals after radiopharmaceutical administration or radiocontamination and demonstrate a need to adjust all "calculated" dose estimates by a dose modification factor (DMF), a radionuclide-specific constant that factors in hitherto not-so-well recognized biophysical processes.


Assuntos
Adenocarcinoma/patologia , Efeito Espectador/efeitos da radiação , Proliferação de Células/efeitos da radiação , Radioisótopos do Iodo/administração & dosagem , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Humanos , Masculino , Camundongos , Camundongos Nus , Doses de Radiação
20.
Immunity ; 18(6): 801-11, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12818161

RESUMO

Helper T (Th) cell differentiation is accompanied by complex transcriptional changes. Although costimulatory receptors are important in Th differentiation, the underlying mechanisms are poorly understood. Here we examine the transcriptional mechanisms by which ICOS regulates Th2 differentiation and selective IL-4 expression by effector T cells. We found impaired expression of c-Maf transcription factor functionally associated with the IL-4 defect in ICOS(-/-) cells. c-Maf expression in effector cells was regulated by IL-4 levels during Th differentiation. ICOS costimulation potentiated the T cell receptor (TcR)-mediated initial IL-4 production, possibly through the enhancement of NFATc1 expression. These data indicate that ICOS, by enhancing TcR signals at an early stage of T cell activation, regulates IL-4 transcription and T cell function in effector cells.


Assuntos
Antígenos de Diferenciação de Linfócitos T/fisiologia , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas Nucleares , Células Th2/fisiologia , Animais , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Proteína Coestimuladora de Linfócitos T Induzíveis , Interleucina-4/genética , Interleucina-4/metabolismo , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-maf , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...